

Adapting urban water supplies to climate change: an Australian experience

Dr Shiroma Maheepala, CSIRO, Australia.

International Conference on Climate Change and its Implications for Water Resources and Nutrition Security, 15-16 November 2013, Bangalore India Organised by International Life Sciences Institute - India

LAND AND WATER www.csiro.au

Climate change projections: 2030

• Temp: 0.6 -1.5 C increase; rainfall: 2%-10% decrease in winter/spring

Water supplies in Australian cities

- Major supply of water is surface water stored in reservoirs; some cities use ground water (Perth)
- ~40% of urban water demand is outdoor use

CSIR

Decreased trend in storage inflows in cities

Perth's Annual Storage Inflow GL (1911-2005)

Melbourne: since 1997, 35% lower than prior to 1997

Perth: Since 1974, 47% lower than prior to 1974

Melbourne's Annual Storage Inflow GL (1913-2007)

Total annual water flowing into Melbourne's main water supply storage reservoirs

In Victoria, last 7 years the driest 7 years since records have been kept. Inflows to Melbourne storages since 1997 35% lower than prior to 1997.

Urban areas are growing!

Data sourced from: United Nations, 2010

Supply and demand imbalance

Source: Water supply and demand strategy for Melbourne 2006-2055

Supply-demand imbalance in Australian cities

Comparison of unrestricted consumption vs sustainable yield based on conventional sources in 2001-02

Source: http://www.csiro.au/Outcomes/Water/Water-Book.aspx

Solution: Integrated Urban Water management

Seeking for alternative sources to balance supply and demand in major cities

Source: <u>http://www.csiro.au/Outcomes/Water/Water-Book.aspx</u>

Adaption strategy: source diversification

Comparison of urban water strategies adopted in Australian major cities in 2005 and 2007: indicates expansion of supply portfolio, in addition to demand management

Preference for utilising climate-resilient sources

Table 7.2: Predicted water availability (in GL/year) in 2026 for Australia's capital cities.^{5,6,7,8,9}

	Current yield	2026 yield with climate change	Current desalination capacity	Total capacity (2026)	Urban water consumption 2009	Predicted consumption in 2026	Predicted surplus (deficit) 2026
Adelaide	216	194	100	294	138	176	118
Brisbane and SEQ	476	428	49	Some major cities now -22			
Canberra	104	80	0	have desalination plants, which secured water supply for the			5
Darwin	42	38	0				-17
Hobart	803	723	0				683
Melbourne	555	500	150				134
Perth	256	230	95	next 10-15 years			38
Sydney	603	543	90	055	492	019	14

Source: http://www.csiro.au/Outcomes/Water/Water-Book.aspx

Preference for utilising rainwater, recycled water and stormwater for non-drinking uses

Stormwater harvesting using aquifers as storage devices

Source for the chart on recycled water: National Water Commission - 2012-13 National Performance Framework, Australian Government

Solurce for the chart on rainwater tanks: <u>http://www.csiro.au/Outcomes/Water/Water-Book.aspx</u>

Source diversification has other benefits

Despite the benefits, source diversification is a challenge

- Introduces complex water grids.
 Optimal operation of such grids is not trivial
- Different sources are economical at different spatial scales
- Integrating decentralised sources to centralised sources need a good understanding of system scale implications
- Need community support

CSIRO's research on rainwater tanks

Understanding harvesting potential, optimal design, energy usage, water quality, regional scale yield, social perception and management models (20 papers)

CSIRO's Integrated urban water systems modelling and analysis to inform IUWM

Simulation of urban water systems from supply catchments to receiving waters, as a sub-set of a river basin

Water quality: Total nitrogen discharge to Moreton Bay for different water management options

Coupling with multiobjective optimisation/MCA to identify optimal mix of sources in Adelaide

Conclusions

- Climate change has a significant impact on the urban water supplies, and some impact on the demand
- Australian cities have adopted Integrated Urban Water Management (IUWM), in particular source diversification, as an adaptation measure for climate change
- IUWM however, increases the complexity and interconnectivity, which introduces many knowledge gaps
- Further work is needed to establish IUWM as a viable adaptation measure for climate change

Thank you!

Dr Shiroma Maheepala Principal Research Scientist, Urban Water Systems Science CSIRO, Australia

- **t** +61 419 346784; +61 3 9252 6072
- E shiroma.maheepala@csiro.au

w http://www.csiro.au

LAND AND WATER www.csiro.au

